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Abstract

One of the most important parameters in the appli-
cation of GAs is the population size N. In many cases,
the choice of N determines the quality of obtained
solutions. The study of GAs with finite population
size requires the stochastic treatment of evolution. In
this study, we examined effects of genetic fluctuations
on the performance of GA calculations. We consid-
ered the roles of crossover and mutation by using the
stochastic schema theory within the framework of the
Wright-Fisher model of Markov processes. The fail-
ure probability of obtaining the optimum solution was
investigated experimentally and theoretically.

1 Introduction

This study treats the influence of finite population
size on the performance of genetic algorithms (GAs).
We focused on the effect of genetic drift due to the
random sampling of individuals in selection. When
we apply a GA to a given problem, we choose the
population size IV intuitively or by experience. This is
because we do not have any reliable theory of choosing
N. If we choose a small N to cut the cost of calcula-
tions, there appear several problems caused by genetic
drift. The main part of the effect of genetic drift may
disappear by averaging repeated trials. However there
are several cases in which its effect remains finite even
after averaging. An example of such cases is a GA
on the multiplicative landscape with weak selection
[1, 2]. When one uses a small N, there is a high risk
of poor performance caused by the undesirable effect
of genetic drift. The stochastic analysis of GAs using
finite IV is far more complicated than the determinis-
tic ones assuming infinitely large N. One of the most
fundamental models is the Markov chain theory which
includes selection, mutation and crossover. However,
it is in general difficult to obtain an analytical expres-
sion of Markov process in closed form. Furthermore
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the dimension of the transition matrix increases ex-
ponentially with string length ¢ and population size
N. This fact means that numerical simulations are
impossible when we use realistic values of £ and N. In
population genetics, researchers also encountered this
type of difficulties in treating the evolution of a finite
population by Markov chain model [3]. They found
another approach by the application of diffusion equa-
tions. Fisher treated the simple case of no selection
by the heat diffusion equation. We applied stochastic
approaches to the present problem, and studied the
evolution of first order schemata in the GA on the mul-
tiplicative landscape with finite V. In this report, we
considered the evolution of the GA on the multiplica-
tive landscape to study the influence of genetic drift
on the performance of calculations. This study in-
cludes the crossover and mutation, and effects of these
operators are analyzed by comparing the theory and
numerical experiments. [J

2 Models and Methods
2.1 Representations

In this study, individuals in a population are repre-
sented by binary strings of the fixed length ¢. There
are n = 2° genotypes, and the ith genotype is given
by the binary representation of the integer i,

i:<i(€)7"')i(1)> (OSZSH—].),
where i(k) is 0 or 1.

The population size IV is fixed throughout calcula-

tions, and

where N;(t) is the frequency of the ith genotype at
generation ¢. The relative frequency z;(t) is defined



by
l‘i(t) = Nz(t)/N

If a population is in linkage equilibrium, the distri-
bution of individuals depends only on the frequencies
of the first order schemata [4]. Therefore, the relative
frequency z; is represented by

L

zi = [ hiwy, (1)

k=1

where h;() is the frequency of the first order schema
corresponding to i(k). This decomposition enables us
to treat the population by using the schema theory of
exact form [5].

2.2 Deterministic Model

We use the fitness proportionate selection, and the
fitness f; is the multiplicative function of each bit

£
fi= [T {1 +sik)}, (2)
k=1

where s is a parameter of selection strength. Within
the framework of the infinite population model of mul-
tiplicative landscape, the assumption of linkage equi-
librium holds at all generations if the initial state is at
linkage equilibrium [6]. Thus the evolution process of
the first order schema i(k) = 1 is given by the following
difference equation

(L4 s) hy(2)

hi(t+1) =
A FNOR ®)
and the average fitness f is also given by h;
B ¢
F&) = T {1+ shu), (4)
k=1

denoting i(k) = 1 by 1(k).
2.3 Wright-Fisher Model

The Wright-Fisher model treats chromosomes hav-
ing one locus and two alleles, corresponding to the GA
of £ =1 with genotypes i € {0,1}. The number of the
first genotype 1 takes the values of Ny = {0,1,..., N},
and that of the genotype 0 is given by No = N — Nj.
The fitness values of genotypes are

_ 1 (i(k) = 0)
fio = {1+s (i(k) = 1). (5)
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We analyze selection processes by taking into ac-
count the effect of random sampling, and consider the
process of choosing offspring randomly from the popu-
lation in proportion with their fitness values. If there
are N1 = i copies of the genotype 1 at the current
generation t, the probability P(j|i) of Ny taking the
value of j at the next generation ¢ + 1 is given by the
binomial distribution

Pl = (V) e -0, (6)

where a is given by substituting the right hand side of
equation (3) with

Thus we have 1 i
+S)1
Ntsi (7)
S1
To take into account the effect of mutation with mu-
tation rate p,,, we replace a by b in equation (6)

b= (1-2pm)a+pm (8)

a =

2.4 Diffusion Equations

The Wright-Fisher model can be approximated by
diffusion equations if N is not too small. The diffusion
equation derived from equation (6) is

W) _ V) PVwt) |y 00D:1)

, (9
ot 2 op? op )
where p is the initial value of the relative frequency
y =1/N at time t = 0, and

Vip) = w, M(p) = sp(1—p).

We define the ultimate fixation probability by
u(p) = lim (p.1). (10)
Using equation (9), we have

d®u(p) | 2M(p) du(p)
dp? Vip) dp
The boundary condition is
u(0) =0, wu(l)=1.
Since 2M (p)/V (p) = 2N s, we have
1 — exp(—2Nsp)
1 —exp(—2Ns)
We define the failure probability F' that there is no

optimum solution in the stationary state. This prob-
ability is approximately given by u(p)

F=1—u(p) (13)

= 0. (11)

u(p) = (12)



3 Results

We performed numerical calculations of GA with
roulette wheel selection on the multiplicative land-
scape. The results were compared with the determin-
istic and stochastic models of the first order schema.
We compared results of

1. selection with s = 0.01
2. selection with s = 0.4.

Crossover was done with the uniform crossover of
crossover rate p.. We used mutation rates p,, of 0 and
0.001 and compared their results. The string length
was ¢ = 8. The initial value of the first order schema
was hy = 1/2. The calculations were performed re-
peatedly, and results were averaged over 1000 runs.
Figure 1 shows the failure probabilities F' with the
weak selection of s = 0.01. The solid line represents
the prediction of diffusion model given by equation
(13). We can observe the effect of crossover is very
large, and crossover greatly improve the performance
of GA calculations. We find that even the very small
value of p. = 0.01 has noticeable effect of reducing F'.
Figure 2 also shows the results of s = 0.01 with
mutation rates of p,, = 0.001 and 0. We notice that
mutation also works as the operator reducing F'.
Figure 3 shows the failure probabilities F' with the
strong selection of s = 0.4. In this case, we have to
use more large crossover rate p. = 0.2 to observe the
effect of crossover. When we used the small value of
pe. = 0.01, we cannot observe the effect of crossover.
Figure 4 is the results of s = 0.4 with mutation
rates of p,, = 0.001 and 0. This figure also shows the
effect of mutation in reducing F'.

4 Summary

The study of GA on the multiplicative landscape
demonstrated effects of crossover on the performance
of GA calculations. Since the failure probability F' has
the strong N dependence, we have to choose carefully
the optimum population size NV in the case of weak se-
lection s = 0.01. In the case of strong selection s = 0.4,
there are notable effects of genetic drift and influence
of N when N is very small. We also found that muta-
tion has effects of reducing the failure probabilities. [
It was demonstrated that the diffusion approximation
can explain the behavior of GA on the multiplicative
landscape.
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FAILURE PROBABILITY

Figure 1: Failure probability F. With selection
strength s = 0.01, and crossover rates p. = 1.0, 0.01,
and 0.0.
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Figure 2: Failure probability F' with s = 0.01 and
pe. = 1. Mutation rates are p,, = 0.001 and 0.
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Figure 4: Failure probability F' with s = 0.4 and p. =
1. Mutation rate are p,, = 0.001 and 0.
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